International Conference "Language, Metaphysics and Epistemology" Faculty of Philosophy, University of Belgrade, 9-10 June 2016

Questions Regarding the Method?

Vladimír Marko, František Gahér

Department of Logic and Methodology of Science Comenius University, Bratislava

Analytical Methods in Social Sciences and Humanities
Grant No. APVV-0149-12 · www.amesh.sk

Modern approach: A method is component of the problem solving activity

- In the modern philosophical works it seems that the method is subject discussed in the context of problem solving (Agassi, Kuhn, Laudan, Hintikka, Nickles).
- Laudan: "Science is essentially a problem-solving activity." (Progress and its Problems, 1977)
- Nickles: "The analysis of problems and of problem-solving behavior constitutes, in my judgment, the most promising approach to the general methodology of science today." (What Is a Problem That We May Solve It?, 1981).
- Mayer: "Problem solving is cognitive processing directed at achieving a goal when no solution method is obvious to the problem solver." (Mayer, 1992)
- Formulations emphasize that the method is particle of problem solving activity
- However, philosophical sources give us almost nothing about a structure of problem solving.

What is a problem?

• (Holyoak, 1995, p. 269): "a *problem* arises when we have **a goal** – a state of affairs that we want to achieve – and **it is not immediately apparent how the goal can be attained**".

The most developed approach to problem solving in **philosophy of science(s) / methodology**

Problems are contradictions

Popper:

 scientific problems are largely of the character of contradictions between freely posited theories on the one hand, and incompatible observations or experiments on the other.

Hattiangadi

- a broadening of Popper's notion of a problem
- all intellectual problems may be thought of as contradictions, and a solution as a resolution of the contradiction.
- The new solution may give rise to new problems new contradictions.

Nickles (and Battens)

- QA abductive approach; Q |- A & ~A;
- "Try to refine question and search for the best possible answer (explanation)"

Some starting assumptions

(or maybe prejudices):

1. All knowledge is propositional (or is transformable to propositional form).

2. Problem solver or agent in solving process is intentionally oriented subject.

Problem 1: How problem is coded? Desires, skills, intuitions, insights, observations and perceptual knowledge, symbolical knowledge...

"Propositional tennis player"...

Problem 2: automated, semiautomated agents... "Does mousetrap *intends* to kill a mouse?" The theme concerning Problem Solving could be find under different names in different disciplines, from cognitive sciences, AI, practical use of knowledge in diagnostics and system management...

- General Problem Solving (GPS)
- Problem-solving Method(s) (PSM)
- Problem-solving Knowledge (PSK)
- Knowledge Base System (KBS)
- Expert Systems and Expertise Studies (ES)
- Task Analysis (TA)
- Hyerarchical Task Analysis (HTA)
- Cognitive Task Analysis (CTA)
- Task Solving Knowledge (TKS)
- Human Problem-Solving (HPS)
- ...

The main aim of these disciplines is the reuse of knowledge.

=> probably, here we could find some kind of **generality** related to **an abstract notion of method**

A few observations:

- mostly **endemic** approach and not interrelated results;
- disciplines are **not** conceptually and terminologically synchronized.

Abstract or representation level

Problem space

Execution level

Two kinds of situations and their representations related to two kinds of reaction to an impulse (the problem solution is intentional process!)

Non-problematic situation

Identifying situation as known (confronting with **known obstacle** by **known means**)
Statical situation - there are no changes in background knowledge
Clear representation of the situation leads toward direct executing of the task plan

Problematic situation

unsatisfactory gap, unknown obstacle (according to the background knowledge)
Unsatisfactory representation - problem with codification or with abridging rules
Dynamical situation – plan is developing during the process and problem
representation is changing (make changes in the background knowledge)

A representation (symbolical, verbal, conceptual, visual, schematic, ...) of situation is based on our background knowledge

Well-defined problem – known obstacle adequate representation of the problem space → **task**

III-defined problem - unknown obstacle

- unsatisfactory representation of the problem space (sometimes unclear goal)
- problem with codification or with abridging rules (new evidence or revising constrains)
- searching space strategies (recursive, heuristics, analogy, abduction, ...)

For a problem representation solver needs two kind of knowledge:

- **Declarative knowledge** (*knowing 'that'*, labeling the evidence)
- Procedural knowledge (knowing 'how', relating the problem particles)

Solving process:

- 1. Analysis of situation
 - Identification of situation particles (coding the situation), attributing the labels to problem objects and observations; descriptive level
 - **Searching** the solution that abridges (at least) two states current and intended, searching for adequate **rules that relates two states**; reducing complex problem to **sub-problems**
 - Developing a plan of execution putting together and chaining rules, inference process that transforms problematic to non-problematic situation (transforms problem to task)
- 2. Executing the plan (.exe of abstractly represented a procedure of task solving)

Wang & Chiew model of Problem Solving Process:

Definition 1. A problem space or solution space

$$(1) \qquad \Theta = X \times P \times G$$

a nonempty set of **problem objects** X, a nonempty set of **paths** P, and a nonempty set of **goals** P.

Definition 2. Assuming the layout of **a problem solving process** is **a** function $f: X \to ... \to Y$ on Θ ,

the problem p is the domain of f, X, in general, and a specific instance x, $x \in X$, in particular, i.e.:

(2)
$$p = (X | f: X \rightarrow ... \rightarrow Y); p \in X$$

Definition 3. Problem solving is an activity (a process) of searching or inferring a solution for a given problem in the form of **a set of paths** (P) to reach a set of expected goals (G).

Definition 4. *A goal G* in problem solving is **the terminal result** *Y* of satisfactory in the solution space of the problem *p*, which deduces *X* to *Y* by a sequence of inference in finite steps, i.e.:

(3)
$$G = (Y \mid X \rightarrow ... \rightarrow Y), G \in G$$

Definition 5. A path P in problem solving on Θ is a 3-tuple with a nonempty finite set of problem inputs X, a nonempty finite set of goals G, i.e.:

(4)
$$P = (X, T, G) = X \times T \times G$$

where the a trace $t \in T$ is an internal node or subpath, $t: Xt \to Yt$, that maps an intermediate subproblem Xt to a subgoal Yt.

Two categories of problems in problem solving (according to Definitions 1–5):

- (a) the convergent problem where the goal of problem solving is given, but the path of problem solving is unknown; and
- (b) the divergent problem where the goal of problem solving is unknown and the path of problem solving are either known or unknown.

Definition 6. A solution s to a given problem p on Θ is an instance of a set of selected relation or function, S, which is **a subset of the solution paths in** P, i.e.:

$$S \in S$$

 $S = (X, T, G) \subseteq P; X, T, G \neq 0$

In case #X = 0, #G = 0, or #T = 0, there is no solution for the given problem. For a convergent problem, i.e. $\#G \equiv 1$, the number of possible solutions is $\#X \bullet \#T$.

 For our purposes we need to somewhat refine above Wang & Chiew model. Why?

There is **no explicit**:

- demarcation between procedural and descriptive knowledge (Ryle: knowing 'that'; knowing 'how')
- VM: X above is a composite part of problem space
- demarcation of the problem space and solution space it suggests recursive way of space searching and all possible solutions, so we need:
- demarcation of the relevant as part of complete knowledge
- Reasons for refinement additions:
 - saving of capacities, time and memory consumption;
 - transparency of explanatory reasons

This **calculation model is incomplete** – it shows us only size of the problem in respect to **all possible solutions** – no one is solving the problem in respect to all possible solutions

Solver						
Background knowledge (K)						
non-explicit	explicit					
	declarative (K-D)	procedural (K-Pr)				
visual, motoric, capacities, etc.	Concepts, definitions, declarative propositions that are T ∨ F; awareness of surroundings and capacities	Rules, schemas, structures, macros, "matrix space"				

Relevant knowledge (K-Rel)

In the case of **problem** rising: K-Rel ⊄ K

In the case of **task**: K-Rel $\subset K$

Some S.'s assumptions:

- Represented goal (G);
- intentions, decisions, preferences (D);
- beliefs (B): a gain is attainable

Problem solving process managing

Background knowledge K (K-D & K-Pr)

Representation of goal (G), intention, decision, preferences (D) and beliefs (B), that gain is attainable

representation, abstract levels, meta-domain				grounded domain	
analysis			planning		
t ₁	t_2	t ₃	t ₄	t ₅	t ₆
problem	unsatisfactory gap		task (hypothesis)	Task execution	Goal
observation, identification and coding of elements of observation (K-D); rule of space transition is not part of knowledge, K-Pr ⊄ K	problem space analysis "Searching". Decomposition; analysis of conditions + searching of appropriate structures (K-D + K-Pr); heuristics, reorganizing of knowledge, etc. Simon: "search in matrix space"	Problem space analysis "Finding" of relevant problem structure &/or Relevant conditions of rule (K-Pr)	New representation; Well-defined problem Transformation of problem to task	Application of rule or fulfilling conditions for rule application Hypothesis testing	Outcome of application, valuation
a shortage of relevant knowledge; relevant knowledge (K-Rel) is not part (subset) of knowledge (K): K-Rel ⊄ K			relevant knowledge K-Rel is a subset of K; K-Rel ⊂ K		

Production rule* if conditions then action

^{*}Set of production rules leads to production system

Production rules (production system) if conditions then action

Production rules (production system) if conditions then action Problem solving is a type of activity

Abstraction and generalization

- Rules has form of generality and it claims a relation between/among some concepts. Rule ([natural] law, function, schema, matrix,...) alone, is not a method for itself.
 - Rules does not performs tasks
 - Rules has no own tasks
 - Rule cannot control own execution
 - Tasks, since they are indexed by goals, are always task of someone
- However, it could be used as a kernel of method and be in function of a method.
- Method is always indexed by goal and carrier of intended goal, it means
- Agent (goal + awareness of capacities and circumstances + ability of control) + rule + application of rule (controlling, kind of activity)

Abstraction and generalization

Generic method:

- a sketch of activity structure ("production rule", procedure)
- Different antecedent conditions determines different tools
- Universal (abstract) method should cover disjunction of all conditions and related all tools?
- typical aims requiring fulfilment of some typical antecedent conditions
- Generalized method: chained generic methods (procedures)

Kinds of methods in respect to level of their articulation (and reliability):

- Layman, folk method
- **Licensing** method (manual, expert experience, medicament prescription); it appeals to some authority
- Scientific method, full-fledged, capacity of scientific explanation

Summary: Task vs. Problem

- Agent is "performing a task" using some method
- "Method is way of performing a task" (on abstract and executive level)
- Agent is "solving a problem" by searching for (an unobvious) method
- If there is a problem there is no present an adequate method
- Solving a problem means to conceptually transform problem to a task and to perform a task by a solver

Thanks for Your attention